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INTRODUCTION

On March 11, 2011, a magnitude 9.0 earthquake
followed by a tsunami caused loss of offsite power and
disabled the emergency diesel generators, leading to a
prolonged station blackout at the Fukushima Daiichi site.
After successful reactor trip for all operating reactors, the
inability to remove decay heat over an extended period
led to boil-off of the water inventory and fuel uncovery in
Units 1-3. A significant amount of metal-water reaction
occurred, as evidenced by the quantities of hydrogen
generated that led to hydrogen explosions in the auxiliary
buildings of the Units 1 & 3, and in the de-fuelled Unit 4.
Although it was assumed that extensive fuel damage,
including fuel melting, slumping, and relocation was
likely to have occurred in the core of the affected reactors,
the status of the fuel, vessel, and drywell was uncertain.

To understand the possible evolution of the accident
conditions at Fukushima Daiichi, a Markov model [1] of
the likely state of one of the reactors was constructed and
executed under different assumptions regarding system
performance and reliability. The Markov approach was
selected for several reasons: It is a probabilistic model
that provides flexibility in scenario construction and
incorporates time dependence of different model states. It
also readily allows for sensitivity and uncertainty analyses
of different failure and repair rates of cooling systems.
While the analysis was motivated by a need to gain
insight on the course of events for the damaged units at
Fukushima Daiichi, the work reported here provides a
more general analytical basis for studying and evaluating
severe accident evolution over extended periods of time.
This work was performed at the request of the U.S.
Department of Energy to explore “what-if” scenarios in
the immediate aftermath of the accidents.

MARKOV MODEL DEVELOPMENT

The first step in developing a model is to provide a
representation of the possible states of the core, vessel and
containment and the transitions between these states. A
generic model with damaged fuel inside the reactor vessel
cooled by feed-and-bleed (F&B) was used as the initial
state representing any of the damaged units. The core can
be cooled by F&B, or preferably by a closed-loop
recirculation system. Both cooling mechanisms are
assigned approximate failure and repair rates based on
engineering judgment, as shown in Table I. If cooling to
the reactor vessel is lost for any reason, given the

damaged core in-vessel and the then existing decay heat
level (i.e. about 2 months after reactor scram), the core
will melt and relocate to the bottom of the vessel, start to
attack the bottom head and possibly penetrate the vessel
to slump to the floor of the drywell. This will initiate the
core-concrete interaction as the molten corium spreads on
the drywell floor, leading possibly to drywell failure from
a number of different mechanisms if no further injection
occurs. The approximate timing of key events is based on
analysis of a similar BWR reactor for which severe
accident evaluations were performed several years ago
[2], and is shown in Table I. Table I also shows worst
and best cases, which were used for sensitivity studies, for
the various parameters. These sensitivity calculations
address the uncertainty of the then current status of the
core and the water level in the timing of the key events in
the accident progression, and the use of very approximate
estimates for failure and repair rates of the cooling
systems.

Table I. Key Transition Rates for In-Vessel Markov

Model Development
Reference Worst Best case
case case
Recir. failure 500 100 900
Recirc. Recovery 45 60 30
F&B failure 60 30 150
F&B recovery 1 5 0.25
Fuel to bottom head 1.63 1 3
Fuel outside vessel 0.19 0.1 1

The basis for the in-vessel Markov model is shown in
Figure 1. The transition rates [1] between events or states
shown in this figure are derived from Table I.

The loss of F&B cooling triggers another node that
can then progress on to other nodes representing more
severe events in the accident progression, or not,
depending on the competition between restoration of F&B
and the timing of core degradation, melt and slump
events. After recirculation cooling is established, F&B
cooling with venting would become a backup cooling
system to prevent core melt and vessel breach scenarios.
This is shown in Figure 1 in the lines connecting the
various nodes that depict transitions from one state to
another. The failure and repair rates, as stated earlier, are
approximate, to allow the model to be run and provide
intuitively useful results that give confidence in the basic
setup of the model.
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Fig. 1. Markov In-vessel Model.
RESULTS

A check of the Markov model logic was performed
by calculating and comparing various cases using the
parameters in Table I. For one case the reference values
were used for all the parameters. The other two cases
were a “worst” case and a “best” case. For the worst case
the low values of the ranges in Table I were chosen for
the mean times to equipment failure and core melt
progression, while the high values of the range for
equipment recovery were chosen. For the best case the
opposite was true: the high range values were input for
equipment failure and accident progression and the low
times were input for equipment recovery.

The variation in the results between the three cases
showed the expected trends. For example, as it can be
seen in Figure 2, at 150 days the reference case showed
about a 0.21 probability of fuel relocating ex-vessel,
compared to a 0.85 probability for the worst case and
essentially a zero probability for the best case. Similarly,
the probability of being in a stable recirculation cooling
mode at 150 days inferred from Figure 3 was about 0.75
for the reference case, 0.17 for the worst case and
essentially 1.0 for the best case. From Figure 4, the
probability of being in a feed and bleed mode by 150 days
was only a few percent for the reference and worst case,
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Fig. 2 Probability of fuel relocating ex-vessel.
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Fig. 3 Probability of being in recirculation mode.

and negligible for the best case. These results appear
reasonable given the parameters chosen.

Sensitivity runs were performed to establish the
importance for the results of the various parameters.
These parametric studies shed light on what parameters
play a vital role in minimizing vessel failure and
migration of fuel ex-vessel, and indicated that the
assumed mean time to failure of the recirculation system
was a key parameter. For instance, Figure 5 shows that at
150 days the probability of fuel relocating ex-vessel
increased from 0.21 to 0.33 when the mean time to failure
was decreased from 500 days to 100 days, while it did not
change much (from 0.21 to 0.20) when the mean failure



time was increased to 900 days. Similarly, the probability
of being in a stable recirculation cooling mode at 150
days decreased to 0.64 when the mean failure time was
decreased to 100 days (Figure 6), while the probability of
being in a feed and bleed mode by 150 days (Figure 7)
was basically unaffected.
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Fig. 4 Probability of being in Feed & Bleed mode.
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Fig. 5 Sensitivity of recirculation cooling failure time —
Probability of fuel relocating ex-vessel.
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Fig. 6 Sensitivity of recirculation cooling failure time —
Probability of being in recirculation mode.
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Fig. 7 Sensitivity of recirculation cooling failure time —
Probability of being in Feed & Bleed mode.

CONCLUSIONS

This work illustrates how a Markov model approach
can be used to describe and predict outcomes of a severe
accident for which much uncertainty exists. Further it
enables the study of the time-dependent dynamic events
associated with failure and restoration of cooling modes
to be evaluated in comparison to heat-up times for
damaged fuel

The results obtained from the Markov model provide
reasonably consistent physical descriptions of the
challenge and expected plant responses. There was no
severe and unexpected downturn of events at Fukushima



Daiichi after this work ended in late spring of 2011. Since
then, Units 1-3 have been brought to cold shutdown with
a mode of recirculation cooling established [3].
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